2021. szeptember 12., vasárnap

6. Kiválasztások

6. Kiválasztások

6. Kiválasztások

Segítséget
41. A zöldségesnél 6-féle gyümölcs kapható.
Hányféleképpen vehetek egyszerre 3-féle gyümölcsből 1-1 kg-t?
Megoldás:
Keresett mennyiségek:
 Kiválasztások száma = ?
Alapadatok:
 n = 6
 k = 3
Képletek:
1. Kombináció: `C = ((n),(k))=(n!)/(k!*(n-k)!)`
Kiválasztások száma =
( ) =
2 pont
42. Az iskolai diákbizottságba a 30 fős osztályból 3 embert delegálhatunk.
Hányféleképpen választhatjuk ki a képviselőket?
Megoldás:
Keresett mennyiségek:
 Kiválasztások száma = ?
Alapadatok:
 n = 30
 k = 3
Képletek:
1. Kombináció: `C = ((n),(k))=(n!)/(k!*(n-k)!)`
Kiválasztások száma =
( ) =
2 pont
43. Az osztályunkba 14 fiú és 16 lány jár.
A focicsapatba 7 fiút, a szurkolócsapatba 6 lányt választanak ki véletlenszerűen a testnevelők.
Hányféleképpen tehetik ezt meg?
Megoldás:
Keresett mennyiségek:
 Kiválasztások száma = ?
Alapadatok:
 n1 = 14
 k1 = 7
 n2 = 16
 k2 = 6
Képletek:
1. C = C1*C2
2. Kombináció: `C = ((n),(k))=(n!)/(k!*(n-k)!)`
Kiválasztások száma =
( )·( ) =
2 pont
44. A cukrázdában 12-féle fagylaltot lehet kapni.
Hányféleképpen választhatok ki 3 különböző ízű gombócot, ha csak az számít, milyen ízű a fagyi, a sorrendjük nem?
Megoldás:
Keresett mennyiségek:
 Kiválasztások száma = ?
Alapadatok:
 n = 12
 k = 3
Képletek:
1. Kombináció: `C = ((n),(k))=(n!)/(k!*(n-k)!)`
Kiválasztások száma =
( ) =
2 pont
45. 10 fiú kosarazni megy.
Hányféleképpen alkothatnak két 5 fős csapatot?
Megoldás:
Keresett mennyiségek:
 Kiválasztások száma = ?
Alapadatok:
 n = 10
 k = 5
Képletek:
1. Kombináció: `C = ((n),(k))=(n!)/(k!*(n-k)!)`
Kiválasztások száma =
( ) =
2 pont
46. Tegnap matematikaóra elején a 30 fős osztály 3 tanulója röpdolgozatot, utána történelemórán 2 diák forráselemzést írt.
Hányféleképpen választhatták ki a tanárok a dolgozatokat írókat, ha nem vették figyelembe egymás döntését, azaz egy diák akár mindkét tantárgyból írhatott?
Megoldás:
Keresett mennyiségek:
 Kiválasztások száma = ?
Alapadatok:
 n1 = 30
 k1 = 3
 n2 = 30
 k2 = 2
Képletek:
1. C = C1*C2
2. Kombináció: `C = ((n),(k))=(n!)/(k!*(n-k)!)`
Kiválasztások száma =
( )·( ) =
2 pont
47. A hatos lottón 45 számból 6-ot húznak ki, tehát 6 számot jelölünk be, az ötös lottón 90 számból 5-öt húznak ki, tehát 5 számot jelölnek be.
Melyik fajta lottóból lehetnek több 3 találatos szelvényünk, ha az összes lehetséges esetet megjátszanánk?
Megoldás:
Keresett mennyiségek:
 Kiválasztások száma = ?
Alapadatok:
 összes1 = 45
 jó összes1 = 6
 összes2 = 90
 jó összes2 = 5
 kedvező = 3
Képletek:
1. Hatos lottó:
 6 jóból 3-t választunk ki.
 45-6 rosszból 6-3-t választunk ki.
 CA = C1*C2
2. Ötös lottó:
 5 jóból 3-t választunk ki.
 90-5 rosszból 5-3-t választunk ki.
 CB = C3*C4
A hatos lottó esetén:
Kiválasztások száma =
( )·( ) =
Az ötös lottó esetén:
Kiválasztások száma =
( )·( ) =
4 pont
48. A történelem szóbeli érettségin 20 tétel van, ebből 12 a magyar történelemmel, 8 az egyetemes történelemmel foglalkozik. Egy vizsganap során nem teszik vissza a tételeket.
Megoldás:
Keresett mennyiségek:
 Kiválasztások száma = ?
Alapadatok:
 összes1 = 12
 kiválasztA = 2
 kiválasztB = 3
 összes2 = 8
 kiválasztA = 3
 kiválasztB = 2
Képletek:
1. eset:
12-ből 2-t és 8-ból 3-t választunk ki.
CA = C1*C2 2. eset:
NEM teszik vissza a kihúzott tételeket!
(12-2)-ből 3-t és (8-3)-ból 2-t választunk ki.
CB = C3*C4
a) Az első csoportban vizsgázó 5 diák közül 2 magyar, 3 pedig egyetemes történelemmel foglalkozó tételt húzott.
Hányféleképpen húzhatták ki a tételeket, ha csak az számít, hogy melyik tételeket húzták ki a lehetséges tételek közül, a kihúzás sorrendje nem?
Kiválasztások száma =
( )·( ) =
b) A második csoportba szintén öten vizsgáznak. Ők fordítva, azaz 3 magyar, 2 egyetemes történelemmel foglalkozó tételt húztak.
Hányféleképpen húzhatták ki a tételeket, ha csak az számít, hogy melyik tételeket húzták ki a lehetséges tételek közül, a kihúzás sorrendje nem?

NEM teszik vissza a kihúzott tételeket!
Kiválasztások száma =
( )·( ) =
4 pont

6. Kiválasztások

NÉV:
JEGY: IDŐ:
Ssz. Max pont Pont Paraméter Be
41.
42.
43.
44.
45.
46.
47.
48.
Ö.: - -