2021. szeptember 18., szombat

85. Koordinátarendszerbeli pont, egyenes

85. Koordinátarendszerbeli pont, egyenes

85. Koordinátarendszerbeli pont, egyenes

Segítséget

1. Pontok koordinátái

673. Határozza meg az A( -4; 3) és a B( 9; 12) pontok egymástól és az origótól való távolságát!
Megoldás:
Keresett mennyiségek:
 |AB| = ?
 |AO| = ?
Alapadatok:
 A (-4;3)
 B (9;12)
Képletek:
1. Helyvektor:
Kivonás!
 AB = (B1-A1;B2-A2) = (X1,X2)
2. Helyvektor hossza:
Pitagorasz-tétel!
 `|AB| = sqrt(X1^2+X2^2)`
`vec(AB)` = (; )
|`vec(AB)`| =
|`vec(OA)`| =
|`vec(OB)`| =
5 pont
674. Határozza meg az AB vektor koordinátáit és hosszát, ha A( 1; 2) és B( 10; 8)!
Megoldás:
Keresett mennyiségek:
 AB = ?
 |AB| = ?
Alapadatok:
 A = (1;2)
 A = (10;8)
Képletek:
1. Helyvektor:
Kivonás!
 AB = (B1-A1;B2-A2) = (X1,X2)
2. Helyvektor hossza:
Pitagorasz-tétel!
 `|AB| = sqrt(X1^2+X2^2)`
`vec(AB)` = (; )
|`vec(AB)`| =
3 pont
675. Mekkora az A( -3; 1), B( -1; -4), C( 7; 9) csúcspontú háromszög kerülete?
Válaszát két tizedesre kerekítve adja meg!
Megoldás:
Keresett mennyiségek:
 K = ?
 a = ?
 b = ?
 c = ?
Alapadatok:
 A = (-3;1)
 B = (-1;-4)
 C = (7;9)
Képletek:
1. Oldalhossz számítás:
 AB = (B1-A1;B2-A2) = (X1,X2)
 `|AB| = sqrt(X1^2+X2^2)`
2. Kerületszámítás:
 K = a + b + c
`vec(BC) =` (;)
a =
`vec(AC) =` (;)
b =
`vec(AB) =` (;)
c =
K =
8 pont
676. Számolja ki az előbbi feladatban megadott háromszögben a C csúcsnál levő szög nagyságát!
Megoldás:
Keresett mennyiségek:
 γ = ?
Alapadatok:
 a
 b
Képletek:
1. Koszinusztétel:
 `c^2=a^2+b^2-2*a*b*cos gamma`
= + · cos γ
cos γ =
γ = °
5 pont

2. Felezőpont, súlypont

677. Határozza meg az AB szakasz felezőpontjának koordinátáit, ha A( 3; 2) és B( 5; 8)!
Megoldás:
Keresett mennyiségek:
 F = ?
Alapadatok:
 A = (3;2)
 B = (5;8)
Képletek:
1. Szakasz felezőpontja:
Átlagolás!
 `F=((A1+B1)/2;(A2+B2)/2)`
F = (; )
4 pont
678. Az AB szakasz felezőpontja F( -3; -2) és az A( 4; 5).
Számolja ki a B pont koordinátáit!
Megoldás:
Keresett mennyiségek:
 B = ?
Alapadatok:
 A = (4;5)
 F = (-3;-2)
Képletek:
1. Szakasz felezőpontja:
Átlagolás!
 `F=((A1+B1)/2;(A2+B2)/2)`
B = (; )
4 pont
679. Számolja ki az A( -3; -4), B( -1; 2), C( -7; -9) csúcspontú háromszög súlypontjának koordinátáit!
Megoldás:
Keresett mennyiségek:
 S = ?
Alapadatok:
 A = (-3;-4)
 B = (-1;2)
 C = (-7;-9)
Képletek:
1. Háromszög súlypontja:
Átlagolás!
 `S=((A1+B1+C1)/3;(A2+B2+C2)/3)
S = (; )
4 pont
680. Egy háromszög két csúcspontjának koordinátái: A( -1; 2), B( -7; 4), súlypontja S( -8; 5).
Adja meg a C csúcs koordinátáit!
Megoldás:
Keresett mennyiségek:
 C = ?
Alapadatok:
 A = (-1;2)
 B = (-7;4)
 S = (-8;5)
Képletek:
1. Háromszög súlypontja:
Átlagolás!
 `S=((A1+B1+C1)/3;(A2+B2+C2)/3)
C = (; )
4 pont

85. Koordinátarendszerbeli pont, egyenes

NÉV:
JEGY: IDŐ:
Ssz. Max pont Pont Paraméter Be
673.
674.
675.
676.
677.
678.
679.
680.
Ö.: - -